HIWIN Ballscrews
Technical Information
9.1 E1 Self-lubricant ... 106
9.2 R1 Rotating Nut ... 109
9.3 High Load Drive ... 110
9.4 High Speed (High Dm-N Value) ... 111
9.5 Cool Type ... 113

Supplement Information
A. Ballscrew Failure Analysis ... 117
 A1 Preface .. 117
 A2 The Causes and Precautions of Ballscrew Problems 117
 A3 Locating the Cause of Abnormal Backlash 120
B. Standard Housing Dimension Tolerance 121
C. Stand Spindle Dimension Tolerance 122
D. HIWIN Ballscrew Data Inquiry .. 123
E. HIWIN Ballscrew Request Form 124

(The specifications in this catalogue are subject to change without notification.)
1. Introduction

Ballscrews, also called a ball bearing screws, recirculating ballscrews, etc., consist of a screw spindle and a nut integrated with balls and the balls’ return mechanism, return tubes or return caps. Ballscrews are the most common type of screws used in industrial machinery and precision machines. The primary function of a ballscrew is to convert rotary motion to linear motion or torque to thrust, and vice versa, with the features of high accuracy, reversibility and efficiency. HIWIN provides a wide range of ballscrews to satisfy your special requirements.

The combination of state-of-the-art machining technology, manufacturing experiences, and engineering expertise makes HIWIN ballscrew users “High-Tech Winners”. HIWIN uses precise procedures to create exact groove profiles, either by grinding or precision rolling. Accurate heat treatment is also used to ensure the hardness of our ballscrews. These result in maximum load capacity and service life.

HIWIN precision ballscrews provide the most smooth and accurate movement, together with low drive torque, high stiffness and quiet motion with predictable lengthened service life. HIWIN rolled ballscrews also provide smooth movement and long life for general applications with less precision in lower price. HIWIN has modern facilities, highly skilled engineers, quality manufacturing and assembly processes, and uses quality materials to meet your special requirements.

It is our pleasure to provide you with the technical information and selection procedure to choose the right ballscrews for your applications through this catalogue.

2. Technological Features of HIWIN Ballscrews

2.1 Characteristics of HIWIN Ballscrews

There are many benefits in using HIWIN ballscrews, such as high efficiency and reversibility, backlash elimination, high stiffness, high lead accuracy, and many other advantages. Compared with the contact thread lead screws as shown in (Fig. 2.1), a ballscrew add balls between the nut and spindle. The sliding friction of the conventional screws is thus replaced by the rolling motion of the balls. The basic characteristics and resultant benefits of HIWIN ballscrews are listed in more details as follows:

(1) High efficiency and reversibility

Ballscrews can reach an efficiency as high as 90% because of the rolling contact between the screw and the nut. Therefore, the torque requirement is approximately one third of that for conventional screws. It can be seen from Fig. 2.2 that the mechanical efficiency of ball screws are much higher than conventional lead screws.

HIWIN ballscrews have super surface finish in the ball tracks which reduce the contact friction between the balls and the ball tracks. Through even contact and the rolling motion of the balls in the ball tracks, a low friction force is achieved and the efficiency of the ballscrew is increased. High efficiency renders low drive torque during ballscrew motion. Hence, less drive motor power is needed in operation resulting in lower operation cost.

HIWIN uses a series of test equipment and testing procedures to guarantee the efficiency.
(2) Backlash elimination and high stiffness

Computer Numerically Controlled (CNC) machine tools require ballscrews with zero axial backlash and minimal elastic deformation (high stiffness). Backlash is eliminated by our special designed Gothic arch form balltrack (Fig. 2.3) and preload.

In order to achieve high overall stiffness and repeatable positioning in CNC machines, preloading of the ballscrews is commonly used. However, excessive preload increases friction torque in operation. This induced friction torque will generate heat and reduce the life expectancy. With our special design and fabrication process, we provide optimized ballscrews with no backlash and less heat losses for your application.

(3) High lead accuracy

For applications where high accuracy is required HIWIN’s modern facilities permit the achievement of ISO, JIS and DIN standards or specific customer requirements.

This accuracy is guaranteed by our precise laser measurement equipment and reported to each customer.

(4) Predictable life expectancy

Unlike the useful life of conventional screws is governed by the wear on the contact surfaces, HIWIN’s ballscrews can usually be used till the metal fatigue. By careful attention to design, quality of materials, heat treatment and manufacture, HIWIN’s ballscrews have proved to be reliable and trouble free during the period of expected service life. The life achieved by any ballscrew depends upon several factors including design, quality, maintenance, and the major factor, dynamic axial load (C).

Profile accuracy, material characteristics and the surface hardness are the basic factors which influence the dynamic axial load.

For machine tool applications it is recommended that the life at average axial load should be a minimum of 1×10^6 revs (or 250,000 meters). High quality ballscrews are designed to conform with the B rating (i.e. 90% probability of achieving the design life). Fifty percent of the ballscrews can exceed 2 to 4 times of the design life.
(5) Low starting torque and smooth running

Due to metal to metal contact, conventional contact thread lead screws require high starting force to overcome the starting friction. However, due to rolling ball contact, ballscrews need only a small starting force to overcome their starting friction.

HIWIN uses a special design factor in the balltrack (conformance factor) and manufacturing technique to achieve a true balltrack. This guarantees the required motor torque to stay in the specified torque range.

HIWIN has special balltrack profile tracing equipment to check each balltrack profile during the manufacturing process. A sample trace is shown in Fig. 2.4.

HIWIN also uses computer measurement equipment to accurately measure the friction torque of ballscrews. A typical distance-torque diagram is shown in Fig. 2.5.

(6) Quietness

High quality machine tools require low noise during fast feeding and heavy load conditions. HIWIN achieves this by virtue of its return system, balltrack designs, assembly technique, and careful control of surface finish and dimensions.

(7) Short lead time

HIWIN has a fast production line and can stock ballscrews to meet short lead times.
(8) Advantages over hydraulic and pneumatic actuators

The ballscrew used in an actuator to replace the traditional hydraulic or pneumatic actuator has many advantages, i.e. fast response, no leakage, no filtering, energy savings and good repeatability.

Fig. 2.6 illustrates the typical mechanism for synchronizing four ballscrews. Where the hydraulic or pneumatic one, if used, would be much more complex.

![Fig. 2.6 Typical mechanism of synchronization](image)

2.2 Applications for Ballscrews

HIWIN ballscrews are used in the following fields and the recommended application grade can be found in Table 4.5.

1. CNC machinery: CNC machine center, CNC lathe, CNC milling machine, CNC EDM, CNC grinder, wire cutting machine, boring machine, special purpose machine, etc.
2. Precision machine tools: Milling machine, grinder, EDM, tool grinder, gear manufacturing machine, drilling machine, planer, etc.
3. Industrial machinery: Printing machine, paper-processing machine, automatic machine, textile machine, drawing machine, etc.
4. Electronic machinery: Robot measuring instrument, X-Y table, medical equipment, surface mounting device, semi-conductor equipment, factory automation equipment, etc.
5. Transport machinery: Material handling equipment, elevated actuator, etc.
6. Aerospace industry: Aircraft flaps, thrust open-close reverser, airport loading equipment, missile fin actuator, etc.
7. Miscellaneous: Antenna leg actuator, valve operator, etc.
3. Classification of Standard Ballscrews

3.1 Standard Ball screw Spindle

HIWIN recommends our standard regular ballscrews for your design. However, high lead, miniature or other special types of ballscrews, may also be available upon your request. Table 3.1 shows the standard ballscrew spindles which are available.

3.2 Nut Configuration

(1) Type of return tube design

HIWIN ballscrews have three basic ball recirculation designs. The first, called the external recirculation type ballscrew, consists of the screw spindle, the ball nut, the steel balls, the return tubes and the fixing plate. The steel balls are introduced into the space between the screw spindle and the ball nut. The balls are diverted from the balltrack and carried back by the ball guide return tube form a loop. Since the return tubes are located outside the nut body, this type is called the external recirculation type ballscrew Fig. 3.1.

The second design, called the internal recirculation type ballscrew, consists of the screw spindle, the ball nut, the steel balls and the ball return caps. The balls make only one revolution around the screw spindle. The circuit is closed by a ball return cap in the nut allowing the balls to cross over adjacent ball tracks. Since the ball return caps are located inside the nut body, this is called the internal recirculation type ballscrew Fig. 3.2.

The third design is called endcap recirculation type ballscrew Fig. 3.3.

The basic design of this return system is the same as the external recirculation type nut Fig. 3.4 except that the return tube is made inside the nut body as a through hole. The balls in this design traverse the whole circuit of the balltracks within the nut length. Therefore, a short nut with the same load capacity as the con-

![Fig 3.1 External recirculation type nut with return tubes](image)

![Fig 3.2 Internal recirculation type nut with return caps](image)

![Fig 3.3 Endcap recirculation type nut with return system](image)

(2) Type of nuts

The type of nuts to select depends on the application requirements. HIWIN standard nuts are classified by three letters as follows (see also Chapter 5 for details):

<table>
<thead>
<tr>
<th>Flange Type (F)</th>
<th>Round Type (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Nut (S)</td>
<td>Single-Nut (S)</td>
</tr>
<tr>
<td>Double-Nut (D)</td>
<td>Double-Nut (D)</td>
</tr>
<tr>
<td>Internal Return Cap (I)</td>
<td>Internal Return Cap (I)</td>
</tr>
<tr>
<td>External Return Tube</td>
<td>External Return Tube</td>
</tr>
<tr>
<td>Tube within the Nut Dia. (W)</td>
<td>Tube within the Nut Dia. (W)</td>
</tr>
<tr>
<td>Tube above the Nut Dia. (V)</td>
<td>Tube above the Nut Dia. (V)</td>
</tr>
</tbody>
</table>

* Other Types of nut shape can also be made upon your design.
The HIWIN nomenclature for the number of circuits in the ballnut is described as follows:

For the external type design:
- A : 1.5 turns per circuit
- B : 2.5 turns per circuit
- C : 3.5 turns per circuit

For the internal type design:
- T : 1.0 turn per circuit

For Endcap type design:
- U : 2.8 turns per circuit (high lead)
- S : 1.8 turns per circuit (super high lead)
- V : 0.7 turns per circuit (super high lead)

Table 3.1: HIWIN standard ballscrew spindle and lead

<table>
<thead>
<tr>
<th>Type</th>
<th>Miniature</th>
<th>Regular</th>
<th>High Lead</th>
<th>Super High Lead</th>
</tr>
</thead>
<tbody>
<tr>
<td>lead dia.</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>8</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>10</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>12</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>15</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>16</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>22</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>28</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>32</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>36</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>40</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>45</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>50</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>55</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>63</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>70</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>80</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>100</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
</tbody>
</table>

- The special high-lead double-start nut is classified by adding D in front of the above three letters.
- The compression preload nut is classified by adding P in front of the above three letters.
- The offset pitch preload single nut is classified by adding O in front of the above letters.

Examples:
- RDI means round type, double nut with internal return caps.
- FSW means flange type, single nut with external return tube within the nut diameter.
- DFSV means two-start, flange, single nut with external return tube above the nut diameter.

Table 3.1: HIWIN standard ballscrew spindle and lead

- G : Precision ground grade ballscrews, either left-hand or right-hand screws are available.

3. Number of circuits

The HIWIN nomenclature for the number of circuits in the ballnut is described as follows:

For the external type design:
- A : 1.5 turns per circuit
- B : 2.5 turns per circuit
- C : 3.5 turns per circuit

For the internal type design:
- T : 1.0 turn per circuit

For Endcap type design:
- U : 2.8 turns per circuit (high lead)
- S : 1.8 turns per circuit (super high lead)
- V : 0.7 turns per circuit (super high lead)
Table 3.2 Dimension for spindle ends

We reserve the right to modify and improve data value without prior notice.

Different diameters and leads are available upon request.

3.3 Spindle End and Journal Configuration

Mounting methods

Bearing mounting methods on the end journals of ballscrews are crucial for stiffness, critical speed and column buckling load. Careful consideration is required when designing the mounting method. The basic mounting configuration are shown as follows Fig. 3.6.

Spindle end journal configurations

The most popular journal configurations are shown in Fig. 3.7.

Table 3.2 lists the recommended dimensions and the bearings for the configurations of Fig. 3.7.

| Model | d1 | d5 (h5) | d6 | d7 | d8 | h7 | E | L3 | L4 | L5 | L6 | L7 | L8 | L9 | L10 | L11 | L12 | L13 | p9 | Recommended Bearing |
|-------|----|---------|----|----|----|----|---|----|---|----|----|----|----|----|----|----|----|----|---------------------|
| 10 | 10 | 8 | 7.6 | M8x0.75 | 6 | 6 | 16 | 7 | 29 | 26 | 0.9 | 39 | 50 | 56 | 18 | 10 | 12 | 3.0x1.8 | 608 | 738B |
| 12 | 12 | 8 | 7.6 | M8x0.75 | 6 | 6 | 16 | 7 | 29 | 26 | 0.9 | 39 | 50 | 56 | 18 | 10 | 12 | 3.0x1.8 | 608 | 738B |
| 14 | 14 | 10 | 9.6 | M10x0.75 | 8 | 8 | 20 | 9 | 37 | 34 | 1.15 | 45 | 54 | 62 | 20 | 10 | 14 | 3.0x1.8 | 6200 | 7200BTVP |
| 16 | 16 | 12 | 11.5 | M12x1 | 10 | 8 | 21 | 10 | 41 | 38 | 1.15 | 46 | 56 | 66 | 20 | 10 | 14 | 4.0x2.5 | 6201 | 7301BTVP |
| 20 | 20 | 15 | 14.3 | M15x1 | 12 | - | 22 | 11 | 47 | 44 | 1.15 | 55 | 70 | 84 | 25 | 13 | 16 | 5.0x3.0 | 6202 | 7202BTVP |
| 25 | 25 | 17 | 16.2 | M17x1 | 15 | - | 23 | 12 | 49 | 46 | 1.15 | 56 | 72 | 86 | 25 | 13 | 16 | 5.0x3.0 | 6203 | 7203BTVP |
| 28 | 28 | 20 | 19 | M20x1 | 16 | - | 26 | 14 | 58 | 54 | 1.35 | 68 | 82 | 100 | 28 | 20 | 18 | 6.0x3.5 | 6204 | 7602020TVP |
| 32 | 32 | 25 | 23.9 | M25x1.5 | 20 | - | 27 | 15 | 64 | 60 | 1.35 | 79 | 94 | 116 | 36 | 22 | 26 | 7.0x4.0 | 6205 | 7602025TVP |
| 36 | 36 | 25 | 23.9 | M25x1.5 | 20 | - | 27 | 15 | 64 | 60 | 1.35 | 79 | 94 | 116 | 36 | 22 | 26 | 7.0x4.0 | 6205 | 7602025TVP |
| 40 | 40 | 30 | 28.6 | M30x1.5 | 25 | - | 28 | 16 | 68 | 64 | 1.65 | 86 | 102 | 126 | 42 | 22 | 32 | 8.0x4.0 | 6206 | 7602030TVP |
| 45 | 45 | 35 | 33.3 | M35x1.5 | 30 | - | 29 | 17 | 80 | 76 | 1.65 | 97 | 114 | 148 | 50 | 24 | 40 | 10.0x5.0 | 6207 | 7602035TVP |
| 50 | 50 | 40 | 38 | M40x1.5 | 35 | - | 36 | 23 | 93 | 88 | 1.95 | 113 | 126 | 160 | 60 | 24 | 45 | 12.0x5.0 | 6308 | 7602040TVP |
| 55 | 55 | 45 | 42.5 | M45x1.5 | 40 | - | 38 | 25 | 93 | 88 | 1.95 | 125 | 138 | 168 | 70 | 24 | 50 | 14.0x5.5 | 6309 | 7602045TVP |
| 63 | 63 | 50 | 47 | M50x1.5 | 45 | - | 33 | 27 | 102 | 97 | 2.2 | 140 | 153 | 188 | 80 | 27 | 60 | 14.0x5.5 | 6310 | 7602050TVP |
| 70 | 70 | 55 | 52 | M55x2.0 | 50 | - | 44 | 29 | 118 | 113 | 2.2 | 154 | 167 | 212 | 90 | 27 | 70 | 16.0x6.0 | 6311 | 7602055TVP |
| 80 | 80 | 65 | 62 | M65x2.0 | 60 | - | 49 | 33 | 132 | 126 | 2.7 | 171 | 184 | 234 | 100 | 30 | 80 | 18.0x7.0 | 6313 | 7602065TVP |
| 100 | 100 | 75 | 72 | M75x2.0 | 70 | - | 53 | 37 | 140 | 134 | 2.7 | 195 | 208 | 258 | 120 | 30 | 90 | 20.0x7.5 | 6315 | 7602075TVP |

Table 3.2 Dimension for spindle ends

* We reserve the right to modify and improve data value without prior notice.

* Different diameters and leads are available upon request.
Fig 3.6 Recommended mounting methods for the ballscrew end journals

A. Both ends fixed.

B. One end fixed, other end supported.

C. Both ends supported.

D. One end fixed, other end free.

Fig 3.7 Configurations of spindle ends
4. Design and Selection of HIWIN Ballscrews

4.1 Fundamental Concepts for Selection & Installation

(1) A ballscrew must be thoroughly cleaned in white spirit and oil to protect against corrosion. Trichlorethylene is an acceptable degreasing agent, ensuring the ball track free from dirt and damage (paraffin is not satisfactory). Great care must be taken to ensure that the ball track is not struck by a sharp edged component or tool, and metallic debris does not enter the ball nut (Fig. 4.1).

(2) Select a suitable grade ballscrew for the application (ref. Table 4.5). Install with corresponding mounting disciplines. That is, precision ground ballscrews for CNC machine tools demand accurate alignment and precision bearing arrangement, where the rolled ballscrews for less precision applications, such as packaging machinery, require less precise support bearing arrangement. It is especially important to eliminate misalignment between the bearing housing center and the ballnut center, which would result in unbalanced loads (Fig. 4.2). Unbalanced loads include radial loads and moment loads (Fig. 4.2a). These can cause malfunction and reduce service life (Fig. 4.2b).

(3) To achieve the ballscrews’ maximum life, recommends the use of antifriction bearing oils. Oil with graphite and M0S2 additives must not be used. The oil should be maintained over the balls and the ball tracks.

(4) Oil mist bath or drip feeds are acceptable. However, direct application to the ball nut is recommended (Fig. 4.3).
(5) Select a suitable support bearing arrangement for the screw spindle. Angular contact ball bearings (angle=60°) are recommended for CNC machinery. Because of higher axial load capacity and ability to provide a clearance-free or preloaded assembly (Fig. 4.4).

![Fig 4.4 Different arrangement of ballscrew support bearings](image)

(6) A dog stopper should be installed at the end to prevent the nut from over-travelling which results in damage to ballscrew assembly (Fig 4.5).

![Fig 4.5 A dog stopper to prevent the nut from over travelling](image)

(7) In environments contaminated by dust or metallic debris, ballscrews should be protected using telescopic or bellow-type covers. The service life of a ballscrew will be reduced to about one-tenth normal condition if debris or chips enter the nut. The bellow type covers may need to have a threaded hole in the flange to fix the cover. Please contact engineers when special modifications are needed (Fig. 4.6).

![Fig 4.6 Ballscrew protection by telescopic or bellow type covers](image)

(8) If you select an internal recirculation type or an endcap recirculation type ballscrew, one end of the ball thread must be cut through to the end surface. The adjacent diameter on the end journal must be 0.5 ~ 1.0 mm less than the root diameter of the balltracks (Fig 4.7).

![Fig 4.7 Special arrangement for the end journal of an internal recirculation screw](image)

(9) After heat treating the ballscrew spindle, both ends of the balltracks adjacent to the journal have about 2 to 3 leads left soft, for the purpose of machining. These regions are shown in (Fig. 4.8) with the mark “○” on HIWIN drawings. Please contact engineers if special requirements are needed in these regions.

![Fig 4.8 The heat treatment range of the ballscrew spindle](image)

(10) Excessive preload increases the friction torque and generates heat which reduces the life expectancy. But insufficient preload reduces stiffness and increases the possibility of lost motion. recommends that the maximum preload used for CNC machine tools should not exceed 8% of the basic dynamic load C (10° revs).

(11) For an internal recirculation nut, when the nut needs to be disassembled from/assembled to the screw spindle, a tube with an outer dia. 0.2 to 0.4 mm less than the root diameter (ref. M39) of the balltracks should be used to release/connect the nut to/from/to the screw spindle via one end of the screw spindle shown in Fig. 4.9.
As shown in Fig 4.10, the support bearing must have a chamfer to allow it to seat properly and maintain proper alignment. Suggests the DIN 509 chamfer as the standard construction for this design (Fig. 4.11).

Fig 4.11 Suggested chamfer dimension per DIN 509 for the "A" dimension in Fig 4.10
Precision ground ballscrews are used in applications requiring high positioning accuracy and repeatability, smooth movement and long service life. Ordinary rolled ballscrews are used for applications requiring less accuracy but still requiring high efficiency and long service life. Precision grade rolled ballscrews have an accuracy between that of ordinary grade rolled ballscrews and the higher grade precision ground ballscrews. They can be used to replace certain precision ground ballscrews with the same grade in many applications.

HIWIN makes precision grade rolled ballscrew up to C6 grade. Geometric tolerances are different from those of precision ground screws (see Chapter 6). Since the outside diameter of the screw spindle is not ground, the

4.2 Ballscrews Selection Procedure

The selection procedure for ballscrews is shown in (Table 4.1) From the known design operation condition, (A) select the appropriate parameter of ballscrew, (B) follow the selection procedure step by step via the reference formula, and (C) find the best ballscrew parameters which can be met for the design requirements.

<table>
<thead>
<tr>
<th>Step</th>
<th>Design operation condition (A)</th>
<th>Ballscrew parameter (B)</th>
<th>Reference formula(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Positioning accuracy</td>
<td>Lead accuracy</td>
<td>Table 5.2</td>
</tr>
<tr>
<td>Step 2</td>
<td>(1) Max. speed of DC motor (N_max) (2) Rapid feed rate (V_max)</td>
<td>Ballscrew lead</td>
<td>η = (\frac{V_{max}}{N_{max}})</td>
</tr>
<tr>
<td>Step 3</td>
<td>Total travel distance</td>
<td>Total thread length</td>
<td>Total length= thread length + journal end length</td>
</tr>
<tr>
<td>Step 4</td>
<td>(1) Load condition(%) (2) Speed condition(%)</td>
<td>Mean axial load Mean speed</td>
<td>Trees length = stroke + nut length + 100 mm (unused thread)</td>
</tr>
<tr>
<td>Step 5</td>
<td>Mean axial force (≤1/5 C is the best)</td>
<td>Preload</td>
<td>M1</td>
</tr>
<tr>
<td>Step 6</td>
<td>(1) Service life expectancy (2) Mean axial load (3) Mean speed</td>
<td>Basic dynamic load</td>
<td>M13 ~ M14</td>
</tr>
<tr>
<td>Step 7</td>
<td>(1) Basic dynamic load (2) Ballscrew lead (3) Critical speed (4) Speed limited by D_m-N value</td>
<td>Screw diameter and nut type (select some range)</td>
<td>M31 ~ M33 and dimension table</td>
</tr>
<tr>
<td>Step 8</td>
<td>(1) Ballscrew diameter (2) Nut type (3) Preload (4) Dynamic load</td>
<td>Stiffness (check the best one via lost motion value)</td>
<td>M34 ~ M40</td>
</tr>
<tr>
<td>Step 9</td>
<td>(1) Surrounding temperature (2) Ballscrew length</td>
<td>Thermal displacement and target value of cumulative lead (T)</td>
<td>M41 and 4.6 temperature rising effect</td>
</tr>
<tr>
<td>Step 10</td>
<td>(1) Stiffness of screw spindle (2) Thermal displacement</td>
<td>Pretension force</td>
<td>M45</td>
</tr>
<tr>
<td>Step 11</td>
<td>(1) Max. table speed (2) Max. rising time (3) Ballscrew specification</td>
<td>Motor drive torque and motor specification</td>
<td>M19 ~ M28</td>
</tr>
</tbody>
</table>

Table 4.1 Ballscrew selection procedure

4.3 Accuracy Grade of HIWIN Ballscrews

Precision ground ballscrews are used in applications requiring high positioning accuracy and repeatability, smooth movement and long service life. Ordinary rolled ballscrews are used for application grade less accurate but still requiring high efficiency and long service life. Precision grade rolled ballscrews have an accuracy between that of the ordinary grade rolled ballscrews and the higher grade precision ground ballscrews. They can be used to replace certain precision ground ballscrews with the same grade in many applications.

HIWIN makes precision grade rolled ballscrew up to C6 grade. Geometric tolerances are different from those of precision ground screws (see Chapter 6). Since the outside diameter of the screw spindle is not ground, the
There are numerous applications for ballscrews from high precision grade ballscrews, used in precision measurement and aerospace equipment, to transport grade ballscrews used in packaging equipment. The quality and accuracy classifications are described as follows: lead deviation, surface roughness, geometrical tolerance, backlash, drag torque variation, heat generation, and noise level.

HIWIN precision ground ballscrews are classified into 7 classes. In general, HIWIN precision grade ballscrews are defined by the so-called “e 300” value, see Fig. 4.12, and rolled grade ballscrews are defined differently as shown in Chapter 7.

Fig. 4.12 is the lead measuring chart according to the accuracy grade of the ballscrews. The same chart by the DIN system is illustrated in Fig. 4.13. From this diagram, the accuracy grade can be determined by selecting the suitable tolerance in Table 4.2. Fig. 4.14 shows HIWIN’s measurement result according to the DIN standard. Table 4.2 shows the accuracy grade of precision grade ballscrews in HIWIN’s specification. The relative international standard is shown in Table 4.3.

The positioning accuracy of machine tools is selected by ± E value with the e300 variation. The recommended accuracy grade for machine applications is shown in Table 4.5. This is the reference chart for selecting the suitable ballscrews in different application fields.

(1) Accuracy grade

There are numerous applications for ballscrews from high precision grade ballscrews, used in precision measurement and aerospace equipment, to transport grade ballscrews used in packaging equipment. The quality and accuracy classifications are described as follows: lead deviation, surface roughness, geometrical tolerance, backlash, drag torque variation, heat generation, and noise level.

HIWIN precision ground ballscrews are classified into 7 classes. In general, HIWIN precision grade ballscrews are defined by the so-called “e 300” value, see Fig. 4.12, and rolled grade ballscrews are defined differently as shown in Chapter 7.

Fig. 4.12 is the lead measuring chart according to the accuracy grade of the ballscrews. The same chart by the DIN system is illustrated in Fig. 4.13. From this diagram, the accuracy grade can be determined by selecting the suitable tolerance in Table 4.2. Fig. 4.14 shows HIWIN’s measurement result according to the DIN standard. Table 4.2 shows the accuracy grade of precision grade ballscrews in HIWIN’s specification. The relative international standard is shown in Table 4.3.

The positioning accuracy of machine tools is selected by ± E value with the e300 variation. The recommended accuracy grade for machine applications is shown in Table 4.5. This is the reference chart for selecting the suitable ballscrews in different application fields.

Table 4.2 HIWIN accuracy grade of precision ballscrew

<table>
<thead>
<tr>
<th>Accuracy Grade</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>e 300</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>e 2 300</td>
<td>3.5</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>18</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>±E</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>above</td>
<td>315</td>
<td>4</td>
</tr>
<tr>
<td>315</td>
<td>400</td>
<td>5</td>
</tr>
<tr>
<td>400</td>
<td>500</td>
<td>6</td>
</tr>
<tr>
<td>500</td>
<td>630</td>
<td>6</td>
</tr>
<tr>
<td>630</td>
<td>800</td>
<td>7</td>
</tr>
<tr>
<td>800</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>1000</td>
<td>1250</td>
<td>9</td>
</tr>
<tr>
<td>1250</td>
<td>1600</td>
<td>11</td>
</tr>
<tr>
<td>1600</td>
<td>2000</td>
<td>18</td>
</tr>
<tr>
<td>2000</td>
<td>2500</td>
<td>22</td>
</tr>
<tr>
<td>2500</td>
<td>3150</td>
<td>26</td>
</tr>
<tr>
<td>3150</td>
<td>4000</td>
<td>30</td>
</tr>
<tr>
<td>4000</td>
<td>5000</td>
<td>32</td>
</tr>
<tr>
<td>5000</td>
<td>6300</td>
<td>34</td>
</tr>
<tr>
<td>6300</td>
<td>8000</td>
<td>36</td>
</tr>
<tr>
<td>8000</td>
<td>10000</td>
<td>38</td>
</tr>
<tr>
<td>10000</td>
<td>12000</td>
<td>40</td>
</tr>
</tbody>
</table>

(2) Axial play (Backlash)

If zero axial play ballscrews (no backlash) are needed, preload should be added and the preload drag torque is specified for testing purpose. The standard axial play of HIWIN ballscrews is shown in Table 4.4. For CNC machine tools, lost motion can occur in zero-backlash ballscrews through incorrect stiffness. Please consult our engineers when determining stiffness and backlash requirements.
Average lead deviation over useful path Lu. A straight line representing the tendency of the cumulative actual lead. This is obtained by the least square method and measured by the laser system. The value is added by path compensation over the useful path and the mean travel deviation.

Path compensation over useful path Lu. Selection parameter. This value is determined by customer and maker as it depends on different application requirements.

Mean travel deviation. Lead deviation over useful path Lu. Lead variation over path of 300mm. Lead variation over 1 rotation.

Fig 4.12 HIWIN lead measuring curve of precision ballscrew

Fig 4.13 DIN lead measuring curve of precision ballscrew
Fig 4.14 Lead accuracy measuring chart from dynamic laser measurement equipment according to DIN 69051 standard

- **e_{oa} (E_a)**:
 Lead deviation over useful thread length relative to the nominal deviation.
 (This measurement is made according to DIN standard 69051-3-1).
 \[C(T)-e_p(E_p) \leq e_{oa}(E_a) \leq C(T)+e_p(E_p) \]

- **V_{ua}(e_a)**:
 Total relative lead variation over useful thread length.
 (This measurement is made according to DIN standard 69051-3-2).
 \[V_{ua}(e_a) \leq V_{up}(e_p) \]

- **V_{300a}(e_{300a})**:
 Relative lead variation in random 300mm length within thread length.
 (This measurement is made according to DIN standard 69051-3-3).
 \[V_{300a}(e_{300a}) \leq V_{300p}(e_{300p}) \]

- **V_{2\pi a}(e_{2\pi a})**:
 Single lead variation over \(2\pi\).
 (This measurement is made according to DIN standard 69051-3-4).
 \[V_{2\pi a}(e_{2\pi a}) \leq V_{2\pi p}(e_{2\pi p}) \]
Table 4.5 Recommended accuracy grade for machine applications

<table>
<thead>
<tr>
<th>Application grade</th>
<th>Accuracy grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNC Machinery Tools</td>
<td></td>
</tr>
<tr>
<td>Lathes</td>
<td>X ● ● ● ● ●</td>
</tr>
<tr>
<td>Milling machines</td>
<td>X ● ● ● ● ●</td>
</tr>
<tr>
<td>Boring machines</td>
<td>Y ● ● ● ● ●</td>
</tr>
<tr>
<td>Machine Center</td>
<td>Z ● ● ● ● ●</td>
</tr>
<tr>
<td>Jig borers</td>
<td>X ● ● ● ● ●</td>
</tr>
<tr>
<td>Drilling machines</td>
<td>Y ● ● ● ● ●</td>
</tr>
<tr>
<td>Grinders</td>
<td>X ● ● ● ● ●</td>
</tr>
<tr>
<td>EDM</td>
<td>Y ● ● ● ● ●</td>
</tr>
<tr>
<td>Wire cut EDM</td>
<td>X ● ● ● ● ●</td>
</tr>
<tr>
<td>Laser Cutting Machine</td>
<td>Y ● ● ● ● ●</td>
</tr>
<tr>
<td>Punching Press</td>
<td>Z ● ● ● ● ●</td>
</tr>
<tr>
<td>Single Purpose Machines</td>
<td></td>
</tr>
<tr>
<td>Wood working Machine</td>
<td></td>
</tr>
<tr>
<td>Industrial Robot (Precision)</td>
<td>● ● ● ● ● ● ●</td>
</tr>
<tr>
<td>Industrial Robot (General)</td>
<td>● ● ● ● ● ● ●</td>
</tr>
<tr>
<td>Coordinate Measuring Machine</td>
<td>● ● ● ● ● ● ●</td>
</tr>
<tr>
<td>Non-CNC Machine</td>
<td>● ● ● ● ● ● ●</td>
</tr>
<tr>
<td>Transport Equipment</td>
<td>● ● ● ● ● ● ●</td>
</tr>
<tr>
<td>X-Y Table</td>
<td>● ● ● ● ● ● ●</td>
</tr>
<tr>
<td>General Machinery</td>
<td></td>
</tr>
<tr>
<td>Linear Actuator</td>
<td>● ● ● ● ● ● ●</td>
</tr>
<tr>
<td>Aircraft Landing Gear</td>
<td>● ● ● ● ● ● ●</td>
</tr>
<tr>
<td>Airfoil Control</td>
<td>● ● ● ● ● ● ●</td>
</tr>
<tr>
<td>Gate Valve</td>
<td>● ● ● ● ● ● ●</td>
</tr>
<tr>
<td>Power steering</td>
<td>● ● ● ● ● ● ●</td>
</tr>
<tr>
<td>Glass Grinder</td>
<td>● ● ● ● ● ● ●</td>
</tr>
<tr>
<td>Surface Grinder</td>
<td>● ● ● ● ● ● ●</td>
</tr>
<tr>
<td>Induction Hardening Machine</td>
<td>● ● ● ● ● ● ●</td>
</tr>
<tr>
<td>Electromachine</td>
<td>● ● ● ● ● ● ●</td>
</tr>
</tbody>
</table>

Table 4.5 Recommended accuracy grade for machine applications
(3) Geometrical tolerance

It is crucial to select the ballscrew of the correct grade to meet machinery requirements. Table 4.6 and Fig 4.15 are helpful for you to determine the tolerance factors, which are based on certain required accuracy grades.

Fig 4.15 Geometrical tolerance of HIWIN precision ground ballscrew
T1: True running deviation of external diameter relative to AA’
(This measurement is made according to DIN 69051 and JIS B1192)

<table>
<thead>
<tr>
<th>Nominal Diameter do [mm]</th>
<th>Lₜ</th>
<th>(Tₚ [\mu m]) for HIWIN tolerance class</th>
</tr>
</thead>
<tbody>
<tr>
<td>above up to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>20</td>
</tr>
</tbody>
</table>

T2: Run out deviation of bearing relative to AA’
(This measurement is made according to DIN 69051 and JIS B1192)

<table>
<thead>
<tr>
<th>Nominal Diameter do [mm]</th>
<th>(Tₚ [\mu m]) (for (L ≤ Lₜ))</th>
</tr>
</thead>
<tbody>
<tr>
<td>above up to</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>40</td>
</tr>
<tr>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

T3: Coaxial deviation relative to AA’
(This measurement is made according to DIN 69051 and JIS B1192)

<table>
<thead>
<tr>
<th>Nominal Diameter do [mm]</th>
<th>(Tₚ [\mu m]) (for (L ≥ 4Lₜ))</th>
</tr>
</thead>
<tbody>
<tr>
<td>above up to</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>40</td>
</tr>
<tr>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
</tr>
</tbody>
</table>

If \(Lₜ > L_r \), then \(tₚ ≤ Tₚ \frac{Lₜ}{L_r} \)
Table 4.6 Tolerance table and measurement method for HIWIN precision ballscrews

T4: Run-out deviation of bearing end shoulder relative to AA’
(This measurement is made according to DIN 69051 and JIS B1192)

<table>
<thead>
<tr>
<th>Nominal Diameter do [mm]</th>
<th>(T_{4p} [\mu m]) for HIWIN tolerance class</th>
</tr>
</thead>
<tbody>
<tr>
<td>above up to</td>
<td>0 1 2 3 4 5 6 7</td>
</tr>
<tr>
<td>6</td>
<td>3 3 4 4 5 5 6 6</td>
</tr>
<tr>
<td>63</td>
<td>3 3 4 4 5 6 6 8</td>
</tr>
<tr>
<td>125</td>
<td>- - 6 6 8 8 8 10</td>
</tr>
</tbody>
</table>

T5: Face running deviation of locating face (only for nut) relative to BB’
(This measurement is made according to DIN 69051 and JIS B1192)

<table>
<thead>
<tr>
<th>Nut Flange Diameter D [mm]</th>
<th>(T_{5p} [\mu m]) for HIWIN tolerance class</th>
</tr>
</thead>
<tbody>
<tr>
<td>above up to</td>
<td>0 1 2 3 4 5 6 7</td>
</tr>
<tr>
<td>- 20</td>
<td>5 6 7 8 9 10 12 14</td>
</tr>
<tr>
<td>20 32</td>
<td>5 6 7 8 9 10 12 14</td>
</tr>
<tr>
<td>32 50</td>
<td>6 7 8 9 10 11 15 18</td>
</tr>
<tr>
<td>50 80</td>
<td>7 8 9 10 12 13 16 18</td>
</tr>
<tr>
<td>80 125</td>
<td>7 9 10 12 14 15 18 20</td>
</tr>
<tr>
<td>125 160</td>
<td>8 10 11 13 15 17 19 20</td>
</tr>
<tr>
<td>160 200</td>
<td>- 11 12 14 16 18 22 25</td>
</tr>
<tr>
<td>200 250</td>
<td>- 12 14 15 18 20 25 30</td>
</tr>
</tbody>
</table>

T6: Run-out deviation of external diameter (only for nut) relative to BB’
(This measurement is made according to DIN 69051 and JIS B1192)

<table>
<thead>
<tr>
<th>Nut Flange Diameter D [mm]</th>
<th>(T_{6p} [\mu m]) for HIWIN tolerance class</th>
</tr>
</thead>
<tbody>
<tr>
<td>above up to</td>
<td>0 1 2 3 4 5 6 7</td>
</tr>
<tr>
<td>- 20</td>
<td>5 6 7 9 10 12 16 20</td>
</tr>
<tr>
<td>20 32</td>
<td>5 6 7 8 10 12 16 20</td>
</tr>
<tr>
<td>32 50</td>
<td>6 7 8 10 12 14 16 20</td>
</tr>
<tr>
<td>50 80</td>
<td>7 8 10 12 14 15 17 19 20</td>
</tr>
<tr>
<td>80 125</td>
<td>7 9 10 12 14 15 17 19 20</td>
</tr>
<tr>
<td>125 160</td>
<td>8 10 11 13 15 17 19 20 24 25 30</td>
</tr>
<tr>
<td>160 200</td>
<td>- 11 12 14 16 18 22 25 30</td>
</tr>
<tr>
<td>200 250</td>
<td>- 12 14 15 18 20 25 30 40</td>
</tr>
</tbody>
</table>

T7: Deviation of parallelism (only for nut) relative to BB’
(This measurement is made according to DIN 69051 and JIS B1192)

<table>
<thead>
<tr>
<th>Mounting basic length (mm) (L_r)</th>
<th>(T_{7p} [\mu m] / 100mm) for HIWIN tolerance class</th>
</tr>
</thead>
<tbody>
<tr>
<td>above up to</td>
<td>0 1 2 3 4 5 6 7</td>
</tr>
<tr>
<td>- 50</td>
<td>5 6 7 8 9 10 14 17</td>
</tr>
<tr>
<td>50 100</td>
<td>5 6 7 8 10 12 13 15 17</td>
</tr>
<tr>
<td>100 200</td>
<td>- 10 11 13 15 17 24 30</td>
</tr>
</tbody>
</table>

Table 4.6 Tolerance table and measurement method for HIWIN precision ballscrews
4.4 HIWIN Preload Methods

The specially designed Gothic ball track can make the ball contact angle around 45°. The axial force \(F_a \), which comes from an outside drive force or inside preload force, causes two kinds of backlash. One is the normal backlash, \(S_a \), caused by the manufacturing clearance between ball track and ball. The other is the deflection backlash, \(\Delta \ell \), caused by the normal force \(F_n \) which is perpendicular to the contact point.

The clearance backlash can be eliminated by the use of an preload internal force \(P \). This preload can be obtained via a double nut, an offset pitch single nut, or by adjusting the ball size for preloaded single nuts (Fig. 5.7–Fig. 5.8).

The deflection backlash is caused by the preload internal force and the external loading force and is related to that of the effect of lost motion.

(1) Double nut preloading

Preload is obtained by inserting a spacer between the 2 nuts (Fig. 4.17). “Tension preload” is created by inserting an oversize spacer and effectively pushing the nuts apart. “Compression preload” is created by inserting an undersize spacer and correspondingly pulling nuts together. Tension preload is primarily used for precision ballscrews. However, compression preload type ballscrews are also available upon your request. If pretension is necessary to increase stiffness, please contact us for the amount of pretension to be used in the ballscrew journal ends. (0.02mm to 0.03mm per meter is recommended, but the T value should be selected according to the compensation purpose).
(2) Single nut preloading

There are two ways of preloading a single nut. One is called the “oversized-ball preloading method”. The method is to insert balls slightly larger than the ball groove space (oversized balls) to allow balls to contact at four points (Fig. 4.18).

The other way is called “The offset pitch preloading method” as shown in Fig. 4.19. The nut is ground to have a δ value offset on the center pitch. This method is used to replace the traditional double nut preloading method and has the benefit of a compact single nut with high stiffness via small preload force. However, it should not be used in heavy duty preloading. The best preload force is below 5% of dynamic load (C).

![Fig 4.18 Preload by ball size](image)

![Fig 4.19 Offset type preloading](image)

(3) Preload calculation

\[
p = \frac{F_{\text{mean}}}{2.8}
\]

P: preload force (kgf)
F_{mean}: Mean operating load (kgf)
(Ref. M8~10)

\[K_p\] is between 0.1 and 0.3.
\[\eta_1, \eta_2\] are the mechanical efficiencies of the ballscrew.

(1) for common transmission (to convert rotary motion to linear motion)

\[
\eta_1 = \frac{\tan(\alpha)}{\tan(\alpha + \beta)} - 1 - \mu \tan \alpha
\]

(2) for reverse transmission (to convert linear rotary motion to rotary motion)

\[
\eta_1 = \frac{\tan(\alpha - \beta)}{\tan \alpha} - 1 + \mu \tan \alpha
\]

\[
\eta_1 = \frac{\tan^{-1} \frac{\ell}{\pi D_n}}{\pi D_n}
\]

\[
\alpha = \tan^{-1} \mu
\]

\[
\beta = \tan^{-1} \mu
\]

η_1, η_2: Mechanical efficiencies
α: Lead angle (degrees)
D_n: Pitch circle diameter of screw shaft (mm)
ℓ: Lead (mm)
β: Friction angle (0.17° ~ 0.57°)
μ: Friction coefficient (0.003~0.01)

Preload drag torque (Fig. 5.9)

\[
T_d = K_p \times P \times \ell
\]

Preload drag torque (Fig. 5.9)
T_d: Preload drag torque (kgf - mm)
P: Preload (kgf)
ℓ: Lead (mm)
K_p: Preload torque coefficient
$K_p = \frac{1}{\eta_1 \cdot \eta_2}$
(4) Uniformity of preload drag torque

(1) Measuring method
Preload creates drag torque between the nut and screw. It is measured by rotating the screw spindle at constant speed while restraining the nut with a special fixture as shown in Fig. 4.20. The load cell reading force F_p is used to calculate the preload drag torque of the ballscrew.

HIWIN has developed a computerized drag torque measuring machine which can accurately monitor the drag torque during screw rotation. Therefore, the drag torque can be adjusted to meet customer requirements (Fig. 2.5). The measurement standard for preload drag torque is shown in Fig. 4.21 and Table 4.7.

(2) Measuring conditions
1. Without wiper.
2. The rotating speed, 100rpm.
3. The dynamic viscosity of lubricant, 61.2~74.8 cSt (mm/s) 40°C, that is, ISO VG 68 or JIS K2001.
4. The return tube up.

(3) The measurement result is illustrated by the standard drag torque chart. Its nomenclature is shown in Fig. 4.21.

(4) The allowable preload drag torque variation as a function of accuracy grade is shown in Table 4.7.

Table 4.7: Variation range for preload drag torque. (According to JIS B1192)

<table>
<thead>
<tr>
<th>Accuracy grade</th>
<th>Slender ratio < 40</th>
<th>Slender ratio < 60</th>
<th>over 4000 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000 mm maximum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. Slender ratio=Thread length of spindle/ Nominal spindle O.D.(mm)
2. Refer to the designing section of the manual to determine the basic preload drag torque.
3. Table 4.10 shows the conversion table for Nm.
4. For more information, please contact our engineering department.

Fig 4.21 Nomenclature of drag torque measurement

(a) : basic drag torque.
(b) : Variation of basic preload drag torque.
(c) : Actual torque.
(d) : Mean actual preload drag torque.
(e) : Variation value of actual preload drag torque.
(f) : Starting actual torque.
Lu : Useful travelling distance of nut.
4.5 Calculation Formulas

Service life

- The average number of rpm, \(n_{av} \)

\[
\begin{align*}
n_{av} = n_1 \times \frac{t_1}{100} + n_2 \times \frac{t_2}{100} + n_3 \times \frac{t_3}{100} + \ldots \end{align*}
\]

\(n_{av} \): average speed (rpm)
\(n \): speed (rpm)
\(\frac{t_i}{100} \): % of time at speed \(n_i \), etc.

- The average operating load \(F_{bm} \)

(1) With variable load and constant speed

\[
F_{bm} = \sqrt{\frac{n_1^3}{n_{av}} \times \frac{t_1}{100} \times f_{p1} + \frac{n_2^3}{n_{av}} \times \frac{t_2}{100} \times f_{p2} + \frac{n_3^3}{n_{av}} \times \frac{t_3}{100} \times f_{p3} + \ldots}
\]

\(F_{bm} \): average operating load (kgf)
\(f_p \): operation condition factor
 1.1 - 1.2 when running without impact
 1.3 - 1.8 when running in the normal condition
 2.0 - 3.0 when running with heavy impact and vibration

(2) With variable load and variable speed

\[
F_{bm} = \sqrt{\frac{n_1^3}{n_{av}} \times \frac{t_1}{100} \times \frac{f_{p1}}{n_{p1}} + \frac{n_2^3}{n_{av}} \times \frac{t_2}{100} \times \frac{f_{p2}}{n_{p2}} + \frac{n_3^3}{n_{av}} \times \frac{t_3}{100} \times \frac{f_{p3}}{n_{p3}} + \ldots}
\]

(3) With linear variable load and constant speed

\[
F_{bm} = \frac{F_{max} \times f_{p1} + 2 \times F_{max} \times f_{p2}}{3}
\]

Fig 4.22 Equivalent speed
Example 4.5 - 1

A HIWIN ballscrew is subjected to the following operating conditions. Calculate the average running speed and operating load.

Operating Condition:
For smooth running without impact \(f_p = 1.1 \)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Axial load(kgf) ((F_a))</th>
<th>Revolution(rpm) ((n))</th>
<th>Loading time ratio (%) ((t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>1000</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>400</td>
<td>50</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>800</td>
<td>100</td>
<td>20</td>
</tr>
</tbody>
</table>

Calculation

\[
n_{av} = 1000 \times \frac{45}{100} + 50 \times \frac{35}{100} + 100 \times \frac{20}{100} = 487.5 \text{rpm} \quad \text{(ref.M7)}
\]

\[
F_{aw} = \left(\frac{1}{100} \right) \times \left(\frac{1000}{487.5} \times \frac{45}{100} \times 1.1 + 400 \times \frac{50}{487.5} \times 1.1 + 800 \times \frac{35}{487.5} \times 1.1 \right) = 318.5 \text{ kgf}
\]

The resultant axial force, \(F_a \)

For a single nut without preload
\[
F_a = F_{aw}
\]

For a single nut with preload \(P \)
\[
F_a \leq F_{aw} + P
\]

Expected service life for applications

Table 4.8 shows the recommended service life for general applications by service distance. In the right of Table 4.8 is the formula for service life in hours.

Shock load, vibration, temperature, lubrication, position deviation, etc. must be taken into account also.

For single nut

Service life represented in revolutions:

\[
L = \left(\frac{C}{F_a} \right)^{n_{av}} \times 10^8 \tag{M13}
\]

\(L \) : Service life in running revolution (revolutions)
\(C \) : dynamic load rating (kgf) (10^6 revs)

For symmetrical preload double nut arrangement

(a) Service life represented in revolutions:

\[
F_{aw}(1) = P \left(1 + \frac{F_{aw}}{3P}\right)^{1/2}
\]

\[
F_{aw}(2) = F_{aw}(1) - F_{aw}
\]

\[
L(1) = \left(\frac{C}{F_{aw}(1)} \right)^{n_{av}} \times 10^8
\]

(b) Conversion from revolutions to hours:

\[
L_h = L \times \frac{n_{av}}{60} \tag{M15}
\]

\(L_h \) : Service life in hours (hours)
\(n_{av} \) : average speed (rpm, Ref. M7)
(c) Conversion from travel distance to hours:

\[L_n = \left(\frac{L_d \times 10^{6}}{\ell} \right) \times \frac{1}{n_{av}} \times 60 \]

Running life calculation (in hours)

\[L_n = \frac{L_d \times 10^{6}}{\ell} \times \frac{1}{n_{av}} \times 60 \]

\(L_d \): Running life (in hours)
\(L_d \): Running life (in distance, Km)
\(\ell \): Ballscrew lead (mm per rev)
\(n_{av} \): Average running speed (rpm)

<table>
<thead>
<tr>
<th>Machine Type</th>
<th>Service Life in Distance, Ld (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Tools</td>
<td>250</td>
</tr>
<tr>
<td>General Machinery</td>
<td>100~250</td>
</tr>
<tr>
<td>Control Mechanisms</td>
<td>350</td>
</tr>
<tr>
<td>Measuring Equipment</td>
<td>210</td>
</tr>
<tr>
<td>Aircraft Equipment</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 4.8 Typical design service life for general application

(The above service life is calculated by the dynamic load rating for 90% reliability.

(d) the modified service life for different reliability factors is calculated by

\[L_{n_m} = L_n \times f_r \]

\[L_{n_m} = L_n \times f_r \]

with the reliability factor \(f_r \) (Table 4.9)

<table>
<thead>
<tr>
<th>Reliability</th>
<th>f_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>1</td>
</tr>
<tr>
<td>95</td>
<td>0.62</td>
</tr>
<tr>
<td>96</td>
<td>0.53</td>
</tr>
<tr>
<td>97</td>
<td>0.44</td>
</tr>
<tr>
<td>98</td>
<td>0.33</td>
</tr>
<tr>
<td>99</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Table 4.9 Reliability factor for service life.
Example 4.5 - 2

By the example 5.4-1, if the design service life of the ballscrew is 3500 hours, lead = 10mm, single nut with zero backlash, find the nominal diameter of the HIWIN ballscrew.

Calculation

\[P = \frac{F_{bm}}{2.8} = \frac{318.5}{2.8} = 114 \text{ kgf} \]
(Assume zero backlash when \(F_{bm} = 318.5 \text{ kgf} \))

\[F_e = F_{bm} + p = 318.5 + 114 = 432.5 \text{ kgf} \]
(Ref formula M1)

\[L = L_a \times n_a \times 60 = 3500 \times 487.5 \times 60 = 1.02375 \times 10^8 \text{ (revolutions)} \]

\[C' = F_e \left(\frac{L}{10^8} \right)^{1/3} = 432.5 \times \left(\frac{1.02375 \times 10^8}{10^8} \right)^{1/3} = 2023 \text{ kgf} \]

So, from the dimensions table of HIWIN ballscrews, select FSV type nut with spindle nominal diameters equals 32mm and C1 circuits which can satisfy this application.

Example 4.5 - 3

If the ballscrew nominal diameter = 50mm, lead = 8mm, and service life \(L = 7 \times 10^6 \) revolutions, find the permissible load on the screw spindle.

Calculation

From the dimensions table of HIWIN ballscrew, the FSV type ballscrew with nominal diameter = 50 mm, lead = 8 mm and B3 type return tube has the dynamic load rating \(C = 5674 \).

\[F_e = C + \left(\frac{L}{10^8} \right)^{1/3} = 5674 + \left(\frac{7 \times 10^6}{10^8} \right)^{1/3} = 2966 \text{ kgf} \]

Drive torque and drive power for the motor

Fig 4.23 Load operation by ballscrew
Fig. 4.23 shows the terms for a feed system operated by ballscrew. The formula for motor drive torque is given below:

(a) Common transmission (to convert rotary motion to linear motion)

\[T_a = \frac{F_b \times \xi}{2 \pi \eta_1} \] M19

- \(T_a \) = Drive torque for common transmission (kgf-mm)
- \(F_b \) = Axial load (kgf)
- \(\xi \) = Lead (mm)
- \(\eta_1 \) = Mechanical efficiency (0.85 ~ 0.95, Ref. M3)
- \(W \) = Table weight + Work piece weight (kgf)
- \(\mu \) = Friction coefficient of table guide way (0.005 ~ 0.02)

(b) Reverse transmission (to convert linear motion to rotary motion)

\[T_r = \frac{F_b \times \xi \times \eta_2}{2 \pi} \] M20

- \(\eta_2 \) = Mechanical efficiency (0.75 ~ 0.85, Ref. M4)
- \(T_r \) = Torque for reverse transmission (kgf-mm)

(c) Motor drive torque

For normal operation:

\[T_M = (T_r + T_b + T_d) \times \frac{N_1}{N_2} \] M21

- \(T_M \) = Motor drive torque (kgf-mm)
- \(T_r \) = Friction torque of supporting bearing (kgf-mm)
- \(T_b \) = Preload drag torque (kgf-mm, Ref. M2)
- \(N_1 \) = Number of teeth for driver gear
- \(N_2 \) = number of teeth for driven gear

For acceleration operation:

\[T_a = J \alpha \] M22

\[T_a : \text{Motor drive torque during acceleration} \ (\text{kgf-mm}) \]
\[J : \text{System inertia} \ (\text{kgf-mm-sec}^2) \]
\[\alpha : \text{Angular acceleration} \ (\text{rad/sec}^2) \]

\[\alpha = \frac{2 \pi N_{\text{dir}}}{60 t_a} \] M23

- \(N_{\text{dir}} \) = rpm stage2 - rpm stage1
- \(t_a \) = acceleration rising time. (sec)

Where \[J = J_M + J_{G1} + J_{G2} \left(\frac{N_1}{N_2} \right)^2 + \frac{1}{2g} W_s \left(\frac{D_s}{2} \right)^2 \left(\frac{N_1}{N_2} \right)^2 + \frac{W_s}{g} \left(\frac{\xi}{2 \pi} \right)^2 \left(\frac{N_1}{N_2} \right)^2 \]

- \(J \) = Motor inertia + Equivalent gear inertia + Ballscrew inertia + Load inertia (Fig.4.23)

- \(W_s \) = Ballscrew weight (kgf)
- \(D_s \) = Ballscrew nominal diameter (mm)
- \(g \) = Gravity coefficient (9800 mm/sec^2)
- \(J_M \) = Inertia of motor (kgf-mm-sec^2)
- \(J_{G1} \) = Inertia of driver gear (kgf-mm-sec^2)
- \(J_{G2} \) = Inertia of driver gear (kgf-mm-sec^2)
Total operating torque:

\[T_{Ma} = T_M + T_a \]

\(T_{Ma} \) : Total operating torque (kgf-mm)

The inertia of a disc is calculated as following:

\[J = \frac{1}{2g} \pi \rho R^4 L \]

\(J \) : Disc inertia (kgf • mm • sec\(^2\))
\(\rho \) : Disc specific weight (7.8x10\(^{-6}\) kgf/mm\(^3\)) for steel
\(R \) : Disc radius (mm)
\(L \) : Disc length (mm)
\(g \) : Gravity coefficient (9800 mm/sec\(^2\))

\[J_g R L \rho = \frac{1}{2} \pi \rho R^4 L \]

\(J_g \) : Drive power

\[P_d = \frac{T_{pmax} \times N_{max}}{974} \]

\(P_d \) : Maximum drive power (watt) safety
\(T_{pmax} \) : Maximum drive torque (kgf-mm)
\(N_{max} \) : Maximum rotation speed (rpm)

\[J_{g} R L \rho = \frac{1}{2} \pi \rho R^4 L \]

\[t_a = \frac{J}{T_M + T_L} \times \frac{2\pi N_{max}}{60} \times f \]

\(t_a \) : Acceleration rising time
\(J \) : Total inertia moment
\(T_M \) : Motor rated torque
\(T_L \) : Drive torque at rated speed
\(f \) : Safety factor = 1.5

Table 4.10 : Shows the conversion relationship of different measurement units for the motor torque or preload drag torque.

<table>
<thead>
<tr>
<th>kgf-cm</th>
<th>kgf mm</th>
<th>(N_m)</th>
<th>kpm (kgf-m)</th>
<th>OZ-in</th>
<th>ft- (\xi b_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>9.8x10(^{-2})</td>
<td>10(^{-2})</td>
<td>13.8874</td>
<td>7.23301x10(^{-2})</td>
</tr>
<tr>
<td>0.1</td>
<td>1</td>
<td>9.8x10(^{-3})</td>
<td>1.0x10(^{-3})</td>
<td>1.38874</td>
<td>7.23301x10(^{-3})</td>
</tr>
<tr>
<td>10.19716</td>
<td>1.019716x10(^{2})</td>
<td>1</td>
<td>0.1019716</td>
<td>1.41612x10(^{1})</td>
<td>0.737562</td>
</tr>
<tr>
<td>10(^{3})</td>
<td>10(^{3})</td>
<td>9.80665</td>
<td>1</td>
<td>1.38874x10(^{1})</td>
<td>7.23301</td>
</tr>
<tr>
<td>7.20077x10(^{-2})</td>
<td>0.720077</td>
<td>7.06155x10(^{-3})</td>
<td>7.20077x10(^{-4})</td>
<td>1</td>
<td>5.20833x10(^{1})</td>
</tr>
<tr>
<td>13.82548</td>
<td>1.382548x10(^{3})</td>
<td>1.35582</td>
<td>0.1382548</td>
<td>1.92x10(^{3})</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4.10 Conversion table for motor torque.

◆ Example 4.5 - 4

Consider the machining process driven by the motor and ballscrew as Fig. 4.24.

Table weight \(W_1 = 200 \) kgf
Work weight \(W_2 = 100 \) kgf
Friction coefficient of slider \(\mu = 0.02 \)

Operating condition : Smooth running without impact.

<table>
<thead>
<tr>
<th>Axial feed force (kgf)</th>
<th>Revolution (rpm)</th>
<th>Loading time ratio(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>500</td>
<td>20</td>
</tr>
<tr>
<td>300</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>500</td>
<td>50</td>
<td>30</td>
</tr>
</tbody>
</table>
Calculation

(1) Motor drive torque in normal rating condition:

- Motor Condition: Motor diameter : 50 mm, Motor length : 200 mm,
- Gear condition: Driver gear diameter G1 : 80 mm, Thickness : 20 mm, Teeth : 30
 Driven gear diameter G2 : 240 mm, Thickness : 20 mm, Teeth : 90

- Axial feed force = 300 kgf

\[n_m = 500 \times \frac{20}{100} + 100 \times \frac{50}{100} + 50 \times \frac{30}{100} = 165 \text{ rpm} \quad (\text{Ref. M7}) \]

\[F_1 = 100 \, F_2 = 300 \, F_3 = 500 \]

\[F_m = \sqrt{100^2 \times 1 \times \frac{20}{100} \times \frac{500}{165} + 300^2 \times 1 \times \frac{50}{100} \times \frac{100}{165} + 500^2 \times 1 \times \frac{30}{100} \times \frac{50}{165}} = 272 \text{ kgf} \quad (\text{Ref. M9}) \]

\[P = \frac{300}{2.8} = 110 \text{ kgf} \quad \text{(axial feed force = 300 kgf) (Ref. M1)} \]

\[F_r = F_m + \mu W = 272 \times (200 + 100) \times 0.02 = 278 \text{ kgf} \]

\[T_s = \frac{F_2 \times \ell}{2 \pi} = \frac{278 \times 10}{2 \pi \times 0.8} = 553 \text{ kgf} \cdot \text{mm} \quad (\text{Ref. M19}) \]

\[T_s = 0.2 \times \frac{P \times \ell}{2 \pi} = \frac{0.2 \times 110 \times 10}{2 \pi} = 35 \text{ kgf} \cdot \text{mm} \quad (\text{Ref. M2}) \]

\[T_{sd} = (T_s + T_s + T_s) \times \frac{N_1}{N_2} = (553 + 35 + 10) \times \frac{30}{90} = 199 \text{ kgf} \cdot \text{mm} \quad (\text{Ref. M21}) \]

(2) Motor torque in acceleration operation:

(a) Inertia of motor

\[J_m = \frac{1}{2 \times 9800} \times \pi \times 7.8 \times 10^{-4} \times (25)^3 \times 200 = 0.1 \text{ kgf} \cdot \text{mm} \cdot \text{sec}^{-2} \]
(II) Inertia of gear

\[J_{\text{gear}} = J_{a1} + J_{a2} \times \left(\frac{N_1}{N_2} \right)^2 \]

\[J_{a1} = \frac{1}{2} \times 9800 \times \pi \times 7.8 \times 10^{-4} \times \left(\frac{80}{2} \right)^4 \times 20 = 0.064 \text{ kgf} \cdot \text{mm} \cdot \text{sec}^2 \]

\[J_{a2} = \frac{1}{2} \times 9800 \times \pi \times 7.8 \times 10^{-4} \times \left(\frac{240}{2} \right)^4 \times 20 = 5.18 \text{ kgf} \cdot \text{mm} \cdot \text{sec}^2 \]

\[J_{\text{gear}} = 0.064 + 5.18 \times \left(\frac{30}{90} \right)^2 = 0.640 \text{ kgf} \cdot \text{mm} \cdot \text{sec}^2 \]

(III) Inertia of ballscrew

\[J_{\text{ballscrew}} = \frac{1}{2} \times 9800 \times 18 \times \left(\frac{50}{2} \right)^2 \times \left(\frac{30}{90} \right)^2 = 0.064 \text{ kgf} \cdot \text{mm} \cdot \text{sec}^2 \]

(IV) Inertia of load

\[J_{\text{load}} = \frac{300}{9800} \times \left(\frac{10}{2 \times \pi} \right)^2 \times \left(\frac{30}{90} \right)^2 = 0.009 \text{ kgf} \cdot \text{mm} \cdot \text{sec}^2 \]

(V) Total inertia

\[J = 0.1 + 0.64 + 0.064 + 0.009 - 0.813 \text{ kgf} \cdot \text{mm} \cdot \text{sec}^2 \]

(3) Total motor torque

\[T_a = J \cdot \alpha = 0.813 \times 100 = 81.3 \text{ kgf} \cdot \text{mm} \]

\[T_m = T_a + T_a = 199 + 81.3 = 280 \text{ kgf} \cdot \text{mm} \]

(4) Drive power

\[T_{r\text{ max}} = 2 \times 280 = 560 \text{ kgf} \cdot \text{mm} \] (safety factor = 2)

\[P_2 = \frac{560 \times 1500}{974} = 862 \text{ W} = 1.16 \text{ Hp} \]

(5) Selection motor

Select the DC motor rated torque : \(T_m > 1.5 T_m \), and maximum motor torque : \(T_{\text{max}} > 1.5 T_{r\text{ max}} \).

Thus the DC servo motor with following specification can be chosen.

- Rated output : 950 W
- Rated torque : 30 kgf-cm (300 kgf • mm)
- Rated rotational speed : 2000 rpm
- Maximum torque : 65 kgf • cm (650 kgf • mm)
- Moment of inertia of motor : 0.20 kgf • mm • sec^2

(6) Check the acceleration time

\[T_s = \frac{P \times \eta \times \tau}{2\pi N_1} + T_a + T_m \times \frac{N_1}{N_2} = \left(\frac{100 \times 10}{2\pi \times 0.8} + 10 + 35 \right) \times \frac{30}{90} = 81.3 \text{ kgf} \cdot \text{mm} \]

\[\tau \geq \left(\frac{0.879}{300 \times 2 - 81.3} \right) \times \frac{2\pi \times 2000}{60} \times 1.5 = 0.53 \text{ sec} \]
Buckling load

\[F_p = 0.5F_v \]

\[F_v = 40720 \left(\frac{N_f d_s^4}{L_r^2} \right) \]

- \(F_v \): Permissible load (kgf) fixed - fixed
- \(F_p \): Maximum permissible load (kgf) fixed - supported
- \(d_s \): Root diameter of screw shaft (mm)
- \(L_r \): Distance between support bearing (mm)
- \(N_f \): Factor for different mounting types

*1kgf = 9.8N; 1daN = 10N

The buckling load diagram for different spindle diameter and support method is shown in Fig 4.25.

Critical speed

\[N_c = 2.71 \times 10^1 \times \frac{M_f d_s}{L_r} \]

\[N_p = 0.8N_c \]

- \(N_c \): Critical speed (rpm) fixed - fixed
- \(N_p \): Maximum permissible load (rpm) fixed - supported
- \(d_s \): Root diameter of screw shaft (mm)
- \(L_r \): Distance between support bearing (mm)
- \(M_f \): Factor for different mounting types

The critical speed for different spindle and support method is shown in (Fig 4.26).
● $D_m \cdot N$ value for ballscrew surface speed

$D_m \cdot N$ value has a strong influence over ballscrew noise, working temperature and service life of return system.

For HIWIN ballscrew,

$$D_m \times N \leq 70,000$$

D_m: Pitch circle diameter (mm)

N: Maximum speed (rpm)

Ballscrew structure enhancement designed by HIWIN when $D_m \cdot N$ value ranges from 70,000 to 150,000. If $D_m \cdot N$ value above 150,000, please consult our company.

● Stiffness

Stiffness is an indication of the rigidity of a machine. The stiffness of the ballscrew is determined by nut-spindle rigidity via axial load, balltrack contact rigidity and screw spindle rigidity. When assembling the ballscrew in the machine, the stiffness of support bearing, mounting condition of nut with machine table etc. also should be considered. Fig 4.27 shows the relation of total stiffness of the machine feed system.

From testing, the stiffness of nut-spindle relation and ball and balltrack relation can be combined into the stiffness of nut, K_n, and listed in dimension table of different nut type. The stiffness of the ballscrew is shown as:

$$\frac{1}{K} = \frac{1}{K_s} + \frac{1}{K_n}$$

The stiffness of the screw spindle is shown as:

$$K_s = 67.4 \frac{d_r}{L_s}$$

$$K_n = 16.8 \frac{d_r}{L_n}$$

The stiffness chart is shown in Fig 4.28

K: Total stiffness of ballscrew (kgf/µm)

d_r: Root diameter of screw spindle (mm) $= D_m - D_b$

D_b: Diameter of ball (mm)

K_s: Screw spindle stiffness (kgf/µm)

K_n: Nut stiffness (kgf/µm)

The stiffness of the nut is tested using an axial force equal to the highest possible preload of 10% dynamic load (C) and is shown in the dimension table of each nut. When the preload is less than this value, the stiffness of the nut is calculated by extrapolation method as:

$$K_n = 0.8 \times K \left(\frac{P}{0.1C} \right)^{1/3}$$

k_n: Stiffness of nut

K: Stiffness in the dimension table

P: Preload

C: Dynamic load on dimension table (10^6 rev)

Since the offset pitch type preloading method is single nut instead of double nut, it has a good stiffness with a small preload force. The preload of the offset type nut is calculated by 5% of the dynamic load by formula:

$$K_n = 0.8 \times K \left(\frac{P}{0.05C} \right)^{1/3}$$
The axial stiffness of the whole feed system includes the stiffness of support bearings and nut mounting table. The designer should consider the total stiffness carefully.

\[K_s = 0.8 \times K \left(\frac{F_c}{2.8 \times 0.1C} \right)^{1/3} \]

The axial stiffness of the whole feed system includes the stiffness of support bearings and nut mounting table. The designer should consider the total stiffness carefully.

\[\Delta L = 11.6 \times 10^{-6} \times \Delta T \times L_s \]

\(\Delta L \) : Thermal expansion of screw spindle (mm)
\(\Delta T \) : (°C) Temperature rise at screw spindle
\(L_s \) : Total length of screw spindle (mm)

The T value should be chosen to compensate for the temperature rise of the ballscrew. HIWIN recommends a T value of -0.02 ~ -0.03 per meter for CNC machine tools.

- **Basic dynamic axial load rating C (theoretical)**
 - The dynamic load is the load at which 90% of the ballscrews will achieve the service life of \(1 \times 10^6 \) rev (C). The reliability factor can be adjusted by Table 4.9. The dynamic load is shown on the dimension table of each nut type.

- **Basic static axial load rating Co (theoretical)**
 - The static load is the load which will cause the balltrack to have a plastic deformation exceeding 0.0001x ball diameter. To calculate the maximum static load of a ballscrew, the static safety factor \(S_f \) of the application condition should be considered.

\[S_f \times F_{a\text{max}} < C_0 \]

\(S_f \) : Static factor = 2.5 max
\(C_0 \) : Static load from the dimension table of the nut type.
\(F_{a\text{max}} \) : Maximum static axial load.
Example 4.5 - 5

Ballscrew specification:
1. R40-10B2-FSW-1000-1200-0.012
 Lead \(\ell = 10 \, \text{mm} \)
 Turns = 2.5x2
 Lead angle \(\alpha = 4.4^\circ \)
 Friction angle \(\beta = 0.286^\circ \)
 Preload \(P = 250 \, \text{kgf} \)
 Mean axial force \(F_T = 700 \, \text{kgf} \)
 \(N_f = 0.5 \); \(L_c = 1000 \, \text{mm} \); \(M_f = 0.692 \)

Pitch circle diameter \(D_m = 41.4 \, \text{mm} \)
Root diameter \(\sqrt{d} = 34.91 \, \text{mm} \)
Critical speed: fixed - supported
Stiffness of bearing \(K_b = 105 \, \text{kgf/\mu m} \)

Calculation
1. Buckling load \(F_p \)
 \[F_p = 40720 \times \frac{N_f d_r^2}{L_c} = 40720 \times \frac{0.5 \times 34.91^4}{1000^3} = 30240 \, \text{kgf} \]
 \[F_p = 0.5 \times F_p = 0.5 \times 30240 = 15120 \, \text{kgf} \]

2. Critical speed \(N_p \)
 \[N_p = 2.71 \times 10^4 \times \frac{0.692 \times 34.90}{1000^3} = 6545 \, \text{rpm} \]
 \[N_p = 0.8 \times N_c = 0.8 \times 6545 = 5236 \, \text{rpm} \]

3. Mechanical efficiency \(\eta \) (theoretical)
 (i) Common transmission
 \[\eta_{\text{C}} = \frac{\tan \alpha}{\tan(\alpha + \beta)} \]
 (ii) Reverse transmission
 \[\eta_{\text{R}} = \frac{\tan(\alpha - \beta)}{\tan \alpha} \]

4. Stiffness \(K \)
 \[K_s = 16.8 \times \frac{d_r^2}{L_c} = 16.8 \times \frac{34.91^2}{1000} = 20.5 \, \text{kgf/\mu m} \]
 \[p = 250 < 0.1C(= 537) \]
 \[\therefore K_s = 0.8 \times K \left(\frac{p}{0.1C} \right)^{1/3} = 0.8 \times 74 \times \left(\frac{250}{0.1 \times 537} \right)^{1/3} = 46 \, \text{kgf/\mu m} \]
 \[\frac{1}{K_s} = \frac{1}{K} + \frac{1}{K_s} = \frac{1}{20.5} + \frac{1}{46} \]
 \[K = 14.18 \, \text{kgf/\mu m} \]

5. Lost motion during axial force \(F_T = 700 \, \text{kgf} \)
 \[\frac{1}{K_r} = \frac{1}{K} + \frac{1}{K_s} = \frac{1}{14} + \frac{1}{105} \]
 \[K_r = 12.35 \, \text{kgf/\mu m} \]

 \[\delta / 2 = \frac{F}{K} = \frac{700}{12.4} = 56 \, \mu \text{m} = 0.056 \, \text{mm} \] (each way) Total lost motion \(\delta = 2 \times 0.056 = 0.112 \, \text{mm} \)

If the preload increases to 2x250=500 kgf then \(K_s = 58 \, \text{kgf/\mu m} \) and \(K = 15.1 \, \text{kgf/\mu m} \). Total stiffness \(K_s = 13.2 \, \text{kgf/\mu m} \) and total lost motion \(\delta = 0.106 \, \text{mm} \). The difference is only 6\(\mu \text{m} \) (5\% change), comparing with 250 kgf, preloaded nut, but the temperature rise caused by 500kgf preload is heavy. The spindle stiffness is sometimes more important than the nut stiffness. The best way to increase the stiffness of the system is not in the heavy preloading of the ballscrew nut. If the support method changes to fixed-fixed, then \(K_s = 82 \, \text{kgf/\mu m} \) and \(K_r \) becomes 23 kgf/\mu m. The total lost motion \(\delta = 0.061 \, \text{mm} \). The difference is 51\(\mu \text{m} \) (45\%).
Material specification

Table 4.11 shows the general material used for HIWIN ball screw. HIWIN also makes ball screw from stainless steel. Please contact us if you have special requirements.

Manufacturing range

The maximum length to which a ball screw can be manufactured depends on spindle diameter and accuracy grade (Table 4.12). Since high accuracy ball screws require a high degree of straightness to the screw spindle, the higher the slender ratio (length/diameter), the more difficult to manufacture and the less the spindle stiffness.

HIWIN recommends the maximum lengths shown in Table 4.12.

If a longer length is required, please contact with HIWIN engineer.

<table>
<thead>
<tr>
<th>Item</th>
<th>Steel specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spindle</td>
<td>BSI</td>
</tr>
<tr>
<td>EN43C</td>
<td>1.1213</td>
</tr>
<tr>
<td>EN19C</td>
<td>1.7225</td>
</tr>
<tr>
<td>EN19C</td>
<td>1.7228</td>
</tr>
<tr>
<td>Nut</td>
<td>EN34</td>
</tr>
<tr>
<td>EN36</td>
<td>1.6523</td>
</tr>
<tr>
<td>Ball</td>
<td>EN31</td>
</tr>
</tbody>
</table>

Table 4.11 Material Specifications

<table>
<thead>
<tr>
<th>Total length (mm)</th>
<th>O.D.</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>170</td>
<td>300</td>
<td>400</td>
<td>600</td>
<td>700</td>
<td>1000</td>
<td>1000</td>
<td>1200</td>
<td>1300</td>
<td>1500</td>
<td>1600</td>
<td>1800</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>C1</td>
<td>170</td>
<td>400</td>
<td>500</td>
<td>720</td>
<td>950</td>
<td>1300</td>
<td>1300</td>
<td>1500</td>
<td>1800</td>
<td>2300</td>
<td>2500</td>
<td>3100</td>
<td>3500</td>
<td>4000</td>
</tr>
<tr>
<td>C2</td>
<td>170</td>
<td>500</td>
<td>630</td>
<td>900</td>
<td>1300</td>
<td>1700</td>
<td>1800</td>
<td>2200</td>
<td>2900</td>
<td>3200</td>
<td>4900</td>
<td>5000</td>
<td>5200</td>
<td>5500</td>
</tr>
<tr>
<td>C3</td>
<td>200</td>
<td>500</td>
<td>630</td>
<td>1000</td>
<td>1400</td>
<td>1800</td>
<td>2000</td>
<td>2500</td>
<td>3200</td>
<td>3500</td>
<td>4500</td>
<td>5000</td>
<td>6000</td>
<td>7100</td>
</tr>
<tr>
<td>C4</td>
<td>250</td>
<td>500</td>
<td>630</td>
<td>1000</td>
<td>1400</td>
<td>1800</td>
<td>2000</td>
<td>2500</td>
<td>3200</td>
<td>3500</td>
<td>4500</td>
<td>5000</td>
<td>6000</td>
<td>7100</td>
</tr>
<tr>
<td>C5</td>
<td>250</td>
<td>500</td>
<td>630</td>
<td>2400</td>
<td>1700</td>
<td>2400</td>
<td>2500</td>
<td>3000</td>
<td>3800</td>
<td>4000</td>
<td>5000</td>
<td>5500</td>
<td>6900</td>
<td>7100</td>
</tr>
<tr>
<td>C6</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1500</td>
<td>1800</td>
<td>2500</td>
<td>3000</td>
<td>4000</td>
<td>4500</td>
<td>5600</td>
<td>5600</td>
<td>5600</td>
<td>5600</td>
<td>5600</td>
</tr>
<tr>
<td>C7</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>3000</td>
<td>3000</td>
<td>4000</td>
<td>4000</td>
<td>4500</td>
<td>4500</td>
<td>5600</td>
<td>5600</td>
<td>5600</td>
<td>5600</td>
<td>5600</td>
</tr>
</tbody>
</table>

Table 4.12 General manufacturing range of HIWIN screw spindle vs. diameter and accuracy grade

Please consult with HIWIN in this area.
Heat treatment

HIWIN’s homogenous heat treatment technique gives the ballscrew maximum life capability. Table 4.13 shows the hardness value of hardness in each component of HIWIN ball screws. The surface hardness of the ball screw affects both dynamic and static load value. The dynamic and static values shown in the dimension table are the values for a surface hardness equal to HRC 60. If the surface hardness is lower than this value, the following formula will give you the calibration result.

\[
\begin{align*}
C'_{o} &= C_{o} \times f_{H0} = \left(\frac{\text{Real Hardness (HRC)}}{60} \right) \leq 1 \\
C' &= C \times f_{H} = \left(\frac{\text{Real Hardness (HRC)}}{60} \right)^{2} \leq 1
\end{align*}
\]

Where \(f_{H0} \) and \(f_{H} \) are the hardness factor.

\(C'_{o} \): Calibrated static load

\(C_{o} \): Static load

\(C' \): Calibrated dynamic load

\(C \): Dynamic load

<table>
<thead>
<tr>
<th>Item</th>
<th>Treat Method</th>
<th>Hardness (HRC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spindle</td>
<td>Induction Hardening</td>
<td>58-62</td>
</tr>
<tr>
<td>Nut</td>
<td>Carburizing or Induction Hardening</td>
<td>58-62</td>
</tr>
<tr>
<td>Ball</td>
<td></td>
<td>62-66</td>
</tr>
</tbody>
</table>

Table 4.13 Hardness of each component of HIWIN ballscrew

4.6 Temperature Rise Effect on Ballscrews

The temperature rise of ballscrew during the working period will influence the accuracy of the machine feed system, especially in a machine designed for high speed and high accuracy.

The following factors have the effect of raising the temperature in a ballscrew.

(1) Preload
(2) Lubrication
(3) Pretension

Fig 4.29 shows the relation of working speed, preload and temperature rise. Fig 4.30 shows the relation of nut temperature rise to preload friction torque. From Fig 4.29, Fig 4.30 and example 4.5-5, doubling the preload of the nut will increase the temperature about 5 degrees, but the stiffness increase only by about 5% (few µm).

(1) Preload effect

To avoid any lost motion in the machine feed system, increasing the rigidity of the ballscrew nut is important. However, to increase the rigidity of the ballscrew nut, it is necessary to preload the nut to a certain level.

Preloading the nut will increase the friction torque of the screw, making it more sensitive to an increase in temperature during working period.

HIWIN recommends using a preload of 8% of the dynamic load for medium and heavy preload, 6% ~ 8% for medium preload, 4% ~ 6% for light and medium and below 4% for light preload.

The heaviest preload should not exceed 10% of the dynamic load for best service life and a low temperature rise effect.

(2) Lubrication effect

The selection of lubricant will directly influence the temperature rise of the ballscrew.

HIWIN ball screws require appropriate lubrication either by greasing or oiling. Antifriction bearing oil is recommended for ball screw oil lubrication. Lithium soap based grease is recommended for ball screw greasing. The basic oil viscosity requirement depends on the speed, working temperature and load condition of the application.

(Fig 4.31) shows the relation of oil viscosity, working speed and rise in temperature.
When the working speed is higher and the working load is lower, a low viscosity oil is better. When the working speed is lower and the working load is heavy, a high viscosity oil is preferred.

Generally speaking, oil with a viscosity of 32 ~ 68 cSt at 40 °C (ISO VG 32-68) is recommended for high speed lubrication (DIN 51519) and viscosity above 90 cSt at 40 °C (ISO VG 90) is recommended for low speed lubrication.

In high speed and heavy load applications the use of a forced coolant is necessary to lessen the temperature. The forced lubrication of coolant can be done by a hollow ballscrew.

Fig 4.32 shows the comparison of a ballscrew applied with coolant and without coolant.
Fig 4.33 shows a typical application for hollow ballscrew in machine tools. The inspection and replenishment of the ballscrew lubricant is listed in Table 4.14.

(3) Pretension effect
When the temperature rises in the ballscrew, the effect of thermal stress will elongate the screw spindle. It can make the spindle length unstable.

The elongating relationship can be calculated according to M41. This elongation can be compensated via the pretension force. For the purpose of pretension, there is a negative T value indicated in the design drawing to compensate the pretension value.

Since a large pretension force will cause the burn down of the supporting bearing, HIWIN recommends using pretension when the temperature rise is below 5 °C. Also, if the diameter of the screw spindle is greater than 50mm, it is not suitable for pretension. A large spindle diameter requires a high pretension force, causing burn down of the supporting bearing.

HIWIN recommends a T compensation value of about 3°, (about -0.02 ~ 0.03 for each 1000 mm screw spindle).

Since different applications require different T values, please contact HIWIN engineer.

The pretension force is calculated as:

$$P_T = K_s \times \Delta L$$

K_s: Stiffness of screw spindle (kgf/µm)
P_T: Pretension force (kgf)
ΔL: Pretension value (µm)

<table>
<thead>
<tr>
<th>Lubrication Method</th>
<th>Inspection & Replenishment Guide</th>
</tr>
</thead>
</table>
| Oil | - Check the oil level and clean the contamination once a week.
 - When contamination happens, replacing the oil is recommended. |
| Grease | - Inspect for contamination of chips every 2 or 3 months.
 - If contamination happens, remove old grease and replace with new grease.
 - Replace grease once a year. |

Table 4.14: Inspection and replenishment of Lubricant
HIWIN manufactures ballscrews according to customer blueprint or specifications. Please read the following information for understanding in ballscrew designing.

1. Nominal diameter.
2. Thread lead.
3. Thread length, total length.
4. End journal configuration.
5. Nut configuration
6. Accuracy grade (lead deviation, geometrical tolerance).
7. Working speed.
8. Maximum static load, working load, preload drag torque.
9. Nut safety requirements.
10. Lubrication hole position.

HIWIN Ballscrew Nomenclature

HIWIN ballscrews can be specified as follows:

- **Start type**
 - 1: Single start
 - 2: Double start
 - 3: Triple start
 - 4: Four start

- **Right hand screw**
 - Nominal diameter
 - Number of turns
 - Lead
 - Total length

- **Preload type**
 - P: Compression type
 - O: Offset type
 - D: High lead double start
 - T: High lead triple start
 - Q: High lead quaternary start

- **Nut type**
 - S: Single nut
 - D: Double nut

- **Circulation type**
 - W: Tubes within nut body
 - V: Tubes above nut body
 - B: Bonded tube
 - I: Internal cap
 - H: End cap
 - Note: M: Stainless

- **Lead deviation in random 300mm travel path within thread length**

Number of turns

- A: 1.5, B: 2.5, C: 3.5
 - T1: 3 turns, S1: 1.8x1, U1: 2.8x1
 - T2: 4 turns, S2: 1.8x2, U2: 2.8x2
 - T3: 5 turns, S3: 1.8x3, U3: 2.8x3
 - T4: 6 turns, S4: 1.8x4, V2: 0.7x2

Note:
1. Different diameters and leads are available upon request.
2. Right hand thread is standard, left hand thread is available upon request.
3. Longer lengths are available upon request.
4. Stainless steel is available upon request.
5. Complete questionnaire on page 123~124 and consult with HIWIN engineers.
6. If you need to order DIN 69051 type, please mark “DIN”.

HIWIN